Skip to main content

Defense White Paper on Cognitive Tactical Communication Networks


Defense Industry Technology - Tactical Communication Networks

Thursday, August 1, 2013, 6:00 AM
Defense White Paper on Cognitive Tactical Communication Networks

Ari Hulkkonen1, Reima Kettunen1, Juha Ylitalo1, Marko Höyhtyä2,
1Elektrobit Wireless Communications Ltd, Tutkijantie 7, 90570 Oulu, Finland
2VTT Technical Research Centre of Finland, Kaitoväylä 1, 90571 Oulu, Finland

Abstract—Cognitive Radio (CR) has been an intensive topic of research in recent years. Its main applications range from the utilization of TV white spaces to interoperability between large communication systems in all layers. Tactical communication systems that have to operate in hostile radio environments with interference, jamming and rapidly changing network topology share many common challenges with civilian cognitive radio. This has been recognized by defense organizations, and many related research activities have also targeted the utilization of cognition in tactical communications.


Cognitive radio (CR) systems obtain information about their environment to adjust their operation adaptively to provide required services to end users. Regarding spectrum use, future wireless systems equipped with cognitive radio capabilities could dynamically access new frequency bands, and at the same time protect higher-priority users on the same bands from harmful interference [3]. For future mobile communication systems, cognitive radio techniques present a promising opportunity for cost-efficient access to spectrum bands to meet growing user demand. The emergence of CR techniques, especially in the terrestrial domain, has recently played a significant role in wireless research.

The focus in CR research has remained strongly on terrestrial civilian networks, although activities such as Software and Cognitive Radio for European Defense (SCORED) addressed the same issue from the point of view of military communications. In addition to terrestrial applications such as utilizing the unused frequencies, known as white spaces in between high-power TV-transmitters, cognitive radio has been proposed to other applications such as LTE to allow more efficient spectrum utilization and frequency sharing between terrestrial and satellite systems. Research has been carried out in this field and it has been found that the key issue is to either avoid or manage the interference between systems sharing the spectrum, which also applies to tactical communications. In fact, cognitive radios, due to their inherent environment sensing and transmission adaptation capabilities, are perfect communication platforms to construct tactical communication systems.



Future wireless communications will demand radio technologies providing significantly higher capacity, bit rates and flexibility than existing systems. In addition, wireless access should cover the entire population, including rural and distant areas.

Cognitive Radio has been an active topic of research for some years now. CR technologies have been proposed to improve spectrum occupancy by exploiting the unused parts of the spectrum without interfering with primary users who have either higher priority or legacy rights [4], [3]. Cognitive radio provides a promising technique for wireless systems to resolve these issues, but it still has many challenges to overcome.

Cognitive radios are aware of their environment and the available resources. They learn from the environment and adapt to variations in the environment in real time. In many cases, awareness of the environment equals awareness of the radio spectrum obtained through its own active measurements or from external sources such as public databases [1].

Spectrum awareness is not the only thing that can guide cognitive operation [2]. Time, space, and energy are other possible radio resources to be aware of and guide operation. Relaying and various Multiple-Input and Multiple-Output (MIMO) methods can be used opportunistically to exploit spatial opportunities [2]. As an example, sensing combined with beamforming could give more accurate information about spectrum use in the vicinity.

In addition to being aware of surrounding environment and current situation, the cognitive radios also need mechanisms to utilize the information. Cognition can be applied in multiple layers starting from physical layer adaptation including antennas, radio resource management on link layer controlling the spectrum deployment in time and frequency domains and network functionality comprising routing including selection of the used radio system.

Figure 1 shows a general cognitive cycle for characterizing the operations of cognitive radio system (CRS). According to the definition, CRS has the capabilities of obtaining knowledge, adjusting according to the knowledge and learning from the results. The definition is broad and detailed techniques for creating the CRS functionalities have not yet been defined.


Figure 1: The cognitive cycle


Tactical communications networks are operated in a dynamically changing environment, where interference and sudden changes in the network configuration and radio parameters take place. However, with traditional Combat Net Radios (CNR) it is rather challenging to guarantee a specific performance level for users as the system parameters have to be fixed and agreed beforehand. Problems were first limited through well-performed frequency planning, and later the introduction of wideband radios featuring automatic frequency allocation solved many issues with co-site interference.

Since the introduction of voice transmission, the required information bandwidth has increased drastically. Today, the communication systems transfer images, video and data in addition to voice and data messages between users, thus increasing the throughput and capacity requirements to a new level. The introduction of MIMO and multicarrier techniques has provided more throughput and system capacity but the spectral efficiency has become a problem as the systems require more bandwidth anyway.

Cognitive radio offers new possibilities to further enhance the performance of a modern tactical communication system by introducing methods and mechanisms to avoid interference and interception, improve system-wide spectral efficiency and allow more flexible resource utilization. In addition to terrestrial wireless links, satellites, UAVs and wired connections are combined in a hybrid system (Figure 2).


Figure 2: A Cognitive Tactical Communications Network

In addition to industry driven projects targeting common applications, research activities have been carried out to study the applicability of cognitive radio to military communications. As an example, Defense Advanced Research Projects Agency (DARPA) has launched several programs related to cognitive radio in the United States. DARPA’s neXt Generation Program (XG) aims to develop theoretical solutions for dynamic control of the spectrum, technologies and subsystems that enable reallocation of the spectrum and prototypes to demonstrate applicability to legacy and future military radio systems. Interested reader may look at some tactical network design aspects across the protocol stack from [6].

In Europe, EU-funded projects such as ARAGORN and SENDORA, activities funded by the European Space Agency (ESA) such as the ACROSS [5], and national projects and programs such as TRIAL have developed cognitive radio solutions. In addition, the European Defence Agency (EDA) has launched its own projects to support the development of CR and its applicability to military communications. An example of such an activity is SCORED (Military Software-Defined Radio capabilities including applying Cognitive Radio-based Spectrum Management in the Security and Defence domains).

Elektrobit has participated in numerous of these projects and is currently developing technology and solutions that allow deployment of cognitive radio functionality in practical applications. Following years of active work on MIMO and multicarrier technologies that provided a significant increase in the throughput of wireless links, cognitive radio is today one of the key technologies supporting the rapidly increasing requirements for system capacity. While spectrum resources are limited and bands have become more and more crowded, there is a need for methods that allow more efficient utilization of radio resources.


Figure 3: EB Tactical Router and the Radio Head Unit


The EB Tactical Wireless IP Network (TAC WIN) is a complete solution to building a tactical communications mobile ad hoc network for vehicle and stationary applications. With TAC WIN battle groups can create high-data-rate wireless IP networks as backbones to support C2 data transmission during operations. The flexibility to use the EB solution in different frequency bands and network topologies provides cost effectiveness, ease of use and efficiency in various tactical communication scenarios. The EB Tactical Wireless IP Network is built with these basic components: the Tactical Router and the Radio Head Unit. (Figure 3).

TAC WIN can be deployed as an independent network or as part of a larger operative network supporting a great variety of applications and physical equipment connected to the same flexible and dynamic mobile ad hoc network with high-speed connections comparable to commercial internet services
TAC WIN provides flexible routing functionality and interfaces to establish the connection between nodes and to other systems using either wireless or cable/fibre communications. The wireless interface is provided by the router’s integrated SDR baseband section that allows various military or commercial waveforms to be run, depending on the customer’s requirements.



[1] M. Höyhtyä, A. Hekkala, and A. Mämmelä, “Spectrum awareness: techniques and challenges for active spectrum sensing,” in Cognitive Wireless Networks, edited by F. Fitzek and M. Katz, pp. 353-372, Springer, 2007.
[2] F. H. P Fitzek and M. Katz, editing, Cognitive Wireless Networks, Springer, 2007.
[3] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 25, pp. 201–220, February 2005.
[4] J. Mitola III and G. Q. Maguire, Jr., “Cognitive radio: Making software radios more personal,” IEEE Personal Communications, vol. 6, pp. 13–18, Aug. 1999.
[5] M. Höyhtyä, J. Kyröläinen, A. Hulkkonen, J. Ylitalo, and A. Roivainen, “Application of cognitive radio techniques to satellite communication,” in Proc. DySPAN, pp. 540¬–551, October 2012.
[6] O. Younis, L. Kant, A. McAuley, K. Manousakis, D. Shallcross, K. Sinkar, K. Chang, and K. Young, "Cognitive Tactical Network Models", IEEE Communications Magazine, pp.70-77, October 2010.

Copyright © 2019 - 2024 Army Recognition | Webdesign by Zzam